

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE			
NAME			
CENTRE		CANDIDATE	
NUMBER		NUMBER	
CHEMISTRY			0620/22
Paper 2			May/June 2010
			1 hour 15 minutes
Candidates ans	swer on the Question Paper.		
No Additional N	Materials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
7			
8			
Total			

This document consists of 15 printed pages and 1 blank page.

[Total: 8]

1 The diagram shows part of the Periodic Table. Only some of the elements are shown.

Li			
Na	Mg		
K	Ca	Ti	٧
		Zr	Nb

(a)	Answer the	following	questions	by	choosing	only	from	the	elements	shown	in	the
	diagram.											

You can use each element once, more than once or not at all.

((i) State the names of two transition elements shown in the diagram.	
	and	[2]
(i	ii) State the name of an element which is in Period 3 of the Periodic Table.	
		[1]
(ii	ii) Which element has the electronic structure 2,8,1?	
		[1]
(iv	v) Which element has the fastest reaction with water?	
		[1]
(\	v) Which element has 23 protons in its nucleus?	
		[1]
	Sodium reacts with oxygen to form sodium peroxide, ${\rm Na_2O_2}$. Complete the symbol equation for this reaction.	
	Na + \rightarrow Na ₂ O ₂	
		[2]

© UCLES 2010 0620/22/M/J/10

2 The list describes five types of chemical structures.

giant covalent giant ionic metallic simple atomic simple molecular

(a) The diagrams below show four types of chemical structures.

Α		В	С	D
	(*) [-] (A)	Ar) Ar) Ar) Ar)		Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn
(i) L	Ise the list to ma	atch these structu	ures with the diagrams.	

(-)	ess are not to mater, areas caractares man are diagrams.	
	structure A is	1]

structure B is	. [1]

structure C is[1]

structure D is	[1	1]	
of dotal of the second of the	Γ,	, 1	

(ii)	Which two of the structures A , B , C or D have low melting points?

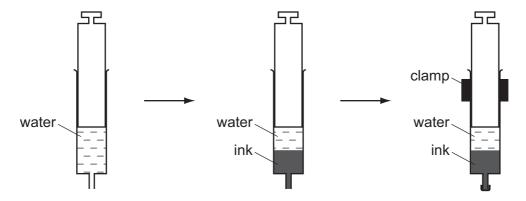
	and	 [1]

(b) Sodium chloride is an ionic solid.Complete the following sentences using words from the list.

	electrons	ionic	molecular	molten	solid
Sodiu	m chloride does	not conduct	t electricity when	it is a	
becau	se the ions cann	ot move. Wh	en it is	s	odium chloride does
condu	ct electricity beca	ause the ions	are free to move		[2]

[Total: 7]

 (a) State one use of water in industry. (b) Describe a chemical test for water. test	vvater i	s an important raw m	naterial in industi	~y.			
 (b) Describe a chemical test for water. test	(a) Sta		•				
result	(b) De						
 (c) A small piece of potassium was placed in a beaker of water. The equation for the reaction is 2K(s) + 2H₂O(l) → 2KOH(aq) + H₂(g) (i) Describe a test for the gas given off in this reaction. test	tes	st					
The equation for the reaction is $2K(s) + 2H_2O(l) \rightarrow 2KOH(aq) + H_2(g)$ (i) Describe a test for the gas given off in this reaction. test	res	sult					
 (i) Describe a test for the gas given off in this reaction. test				in a beake	er of water.		
test		2K(s	s) + $2H_2O(I) \rightarrow$	2KOH(ac) + H ₂ (g)		
result	(i)	Describe a test for	the gas given of	f in this rea	action.		
 (ii) What is the most likely pH of the solution in the beaker when the read complete? Put a ring around the correct answer. pH2 pH6 pH7 pH8 pH12 (d) Water is formed when propane burns. (i) Complete the equation for this reaction. C₃H₈ + 5O₂ →CO₂ +H₂O (ii) Which of the following best describes this reaction? Put a ring around the correct answer. carbonisation combustion dehydration hydrogenation (iii) When 4.4g of propane are burnt in excess oxygen, 7.2g of water are formed 		test					
complete? Put a ring around the correct answer. $pH2 \qquad pH6 \qquad pH7 \qquad pH8 \qquad pH12$ (d) Water is formed when propane burns. $ (i) \qquad \text{Complete the equation for this reaction.} $ $ C_3H_8 + 5O_2 \rightarrow \dots CO_2 + \dots H_2O $ (ii) Which of the following best describes this reaction? Put a ring around the correct answer. $ \text{carbonisation} \qquad \text{combustion} \qquad \text{dehydration} \qquad \text{hydrogenation} $ (iii) When 4.4 g of propane are burnt in excess oxygen, 7.2 g of water are formed		result					
 (d) Water is formed when propane burns. (i) Complete the equation for this reaction. C₃H₈ + 5O₂ →CO₂ +H₂O (ii) Which of the following best describes this reaction? Put a ring around the correct answer. carbonisation combustion dehydration hydrogenation (iii) When 4.4 g of propane are burnt in excess oxygen, 7.2 g of water are formed 	(ii)	complete?	•		in the be	aker when the	reaction
 (i) Complete the equation for this reaction. C₃H₈ + 5O₂ →CO₂ +H₂O (ii) Which of the following best describes this reaction? Put a ring around the correct answer. carbonisation combustion dehydration hydrogenation (iii) When 4.4g of propane are burnt in excess oxygen, 7.2g of water are formed 		pH2	рН6	рН7	рН8	pH12	
$C_3H_8+5O_2 \rightarrowCO_2+H_2O$ (ii) Which of the following best describes this reaction? Put a ring around the correct answer. carbonisation combustion dehydration hydrogenation (iii) When 4.4g of propane are burnt in excess oxygen, 7.2g of water are formed	(d) Wa	ater is formed when p	propane burns.				
 (ii) Which of the following best describes this reaction? Put a ring around the correct answer. carbonisation combustion dehydration hydrogenation (iii) When 4.4g of propane are burnt in excess oxygen, 7.2g of water are formed 	(i)	Complete the equa	tion for this reac	tion.			
Put a ring around the correct answer. carbonisation combustion dehydration hydrogenation (iii) When 4.4 g of propane are burnt in excess oxygen, 7.2 g of water are formed		C ₃ H ₈ +	5O ₂ →	CO ₂ +	ŀ	H ₂ O	
(iii) When 4.4 g of propane are burnt in excess oxygen, 7.2 g of water are formed	(ii)		•		ction?		
		carbonisation	combustion	dehy	dration	hydrogenatio	n
	(iii)						rmed.


[1]

[Total: 10]

4 A student half-filled a syringe with water.

She then carefully drew up some blue ink into the syringe so that it formed a separate layer below the water.

She then left the syringe in a clamp for twenty hours.

After twenty hours the blue colour of the ink had spread throughout the water.

(a)	Use	e the kinetic particle theory to	o explain these observations.	
				[2]
(b)		is a mixture of many chemic at do you understand by the		
				[1]
(c)	The	e list shows some of the sub	stances present in ink.	
			carboxylic acids cobalt(II) ions ethanol iron(II) ions nickel(II) ions tannins water	
	(i)	Water is a good solvent. From the list choose one o	ther substance that is a good solvent.	
				11

(ii)	What is the meaning of the symbol (II) in iron(II)?
	Tick one box.

the number of outer shell electrons

the difference between the neutron and proton number

the oxidation state

[1]

(iii) Tannins are polymers.

the type of isotope

What do you understand by the term *polymer*?

[2]

(d) One of the carboxylic acids present in ink is gallic acid.

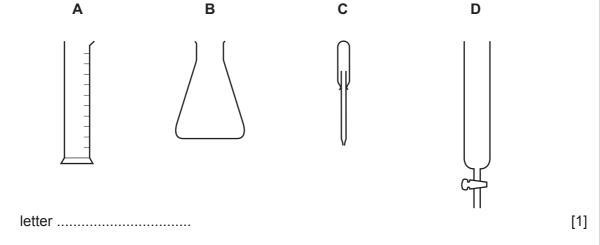
The structure of gallic acid is shown below.

(i) On the structure above, put a ring around the carboxylic acid functional group. [1]

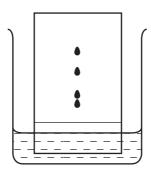
(ii) Gallic acid is a good reducing agent.
What do you understand by the term *reduction*?

.....[1]

[Total: 9]


© UCLES 2010 0620/22/M/J/10

5	A student wants to separate the coloured pigments in a plant leaf by chromatography.
	He grinds the plant leaf and separates the solids from the green solution.

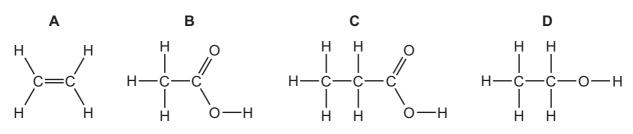

(a)	what method can he use to separate the solids from the solution?	

(b) The student takes a drop of the green solution and puts a spot of it onto a piece of chromatography paper.

From the diagrams below choose the letter for the most suitable piece of apparatus for this task.

- **(c)** The student sets up the chromatography apparatus as shown.
 - (i) Label the diagram to show:
 - the solvent,
 - the original position of the spot of green solution,
 - the chromatography paper.

[3]


(ii) How many different pigments were present in the plant leaf?

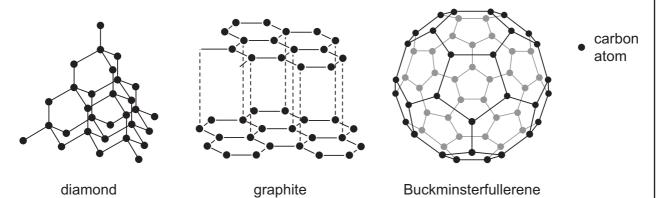
.....[1

For Examiner's Use

[Total: 12]

(d) The structure of some organic compounds found in plant leaves are shown below.

(i)	Which one of these compounds is an unsaturated hydrocarbon?	
		[1]
(ii)	Describe a chemical test for an unsaturated hydrocarbon.	
	test	
	result	[2]
(iii)	What do you understand by the term hydrocarbon?	
		[1]
(iv)	State the name of compound B .	
		[1]
(v)	To which homologous series does compound D belong?	
		[1]


0620/22/M/J/10

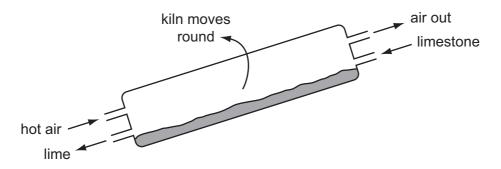
© UCLES 2010

o) To	which Grou	ıp in the Periodic Table o	loes lead belong	?	
Co of	omplete the lead.	lead has the mass numb table to show the numbe dic Table to help you.		articles in	an atom of this isoto
		type of particle	number of pa	articles]
		electrons			
		protons			
		neutrons			
-		heated in oxygen, lead(I equation for this reation.	I) oxide is formed	d.	
	rite a word e	equation for this reation.			noxide are formed.
	rite a word e	equation for this reation. oxide is heated with car			
	rite a word e	equation for this reation. oxide is heated with car	bon, lead and ca → Pb + CO	rbon mor	
 e) W	rite a word e	oxide is heated with car PbO + C ostance becomes oxidise	bon, lead and ca → Pb + CO ed during this rea	rbon mor	
 e) W	rite a word e	equation for this reation. oxide is heated with car PbO + C ostance becomes oxidise conoxide is a covalent cole of these statements ab	bon, lead and ca → Pb + CO ed during this rea mpound.	rbon mor	noxide are formed.
 (i)	rite a word ehen lead(II) Which sub Carbon m Which one b	equation for this reation. oxide is heated with car PbO + C ostance becomes oxidise conoxide is a covalent cole of these statements ab	bon, lead and ca → Pb + CO ed during this rea mpound. bout carbon mone	rbon mor	noxide are formed.
 (i)	hen lead(II) Which sub Carbon m Which one Tick one b	equation for this reation. oxide is heated with car PbO + C ostance becomes oxidise conoxide is a covalent core of these statements aboox.	bon, lead and ca → Pb + CO ed during this rea mpound. pout carbon mond point.	rbon mor	noxide are formed.
 ∌) W!	tite a word end which subsection of the subsecti	oxide is heated with car PbO + C ostance becomes oxidise conoxide is a covalent core of these statements aboox.	bon, lead and ca → Pb + CO ed during this rea mpound. pout carbon mono point.	rbon mor	noxide are formed.
: Wi	hen lead(II) Which sub Carbon m Which one Tick one b It is a It cone	equation for this reation. oxide is heated with car PbO + C ostance becomes oxidise conoxide is a covalent core of these statements abox. solid with a high melting ducts electricity when it is	bon, lead and ca → Pb + CO ed during this rea mpound. pout carbon mono point. is a liquid. e.	rbon mor	noxide are formed.

BLANK PAGE

7 Three forms of carbon are diamond, graphite and Buckminsterfullerene.

(a)	(i)	State one difference in structure between Buckminsterfullerene and diamond.	
,	•••		
(ii)	State two differences in structure between graphite and diamond.	
			[2]
(b)	Stat	te the type of bonding between the carbon atoms in diamond.	
			[1]
(c)	_	gest why graphite is used as a lubricant. er to the layers in your answer.	
(d)	Stat	te one use for diamond.	
			[1]

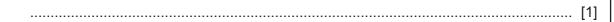

For Examiner's Use

(e)	Wh Exp	en coal i		ioxide is produc		ion in the atm	opshere affects the	е
							[2]
(f)			ontains small amo burning coal lea					
							[2	2]
(g)	Me	thane is	a fuel.					
	(i)	Which on	one of the followine box.	ng is a natural s	source of m	nethane?		
			waste gases fro	om respiration i	n plants			
			waste gases from	om digestion in	animals			
			gases from pho	otosynthesis in	plants			
			gases from fore	est fires				
							[1]

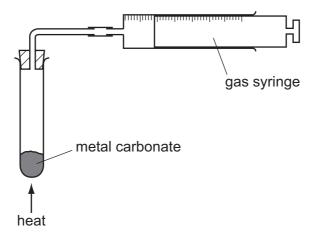
0620/22/M/J/10

(ii)	Draw a diagram to show the arrangement of the electrons in a molecule of methane, $\mathrm{CH_4}$.
	Use ● for an electron from a carbon atom × for an electron from a hydrogen atom
	[1]
(iii)	Methane belongs to the alkane homologous series. Name one other alkane.
	[1]
	[Total: 13]

8 The diagram shows a rotary kiln used to make lime from limestone. Limestone is fed in at the top of the kiln and lime comes out at the bottom.


(a)) What is	the	chemical	name	for	lime'
-----	-----------	-----	----------	------	-----	-------

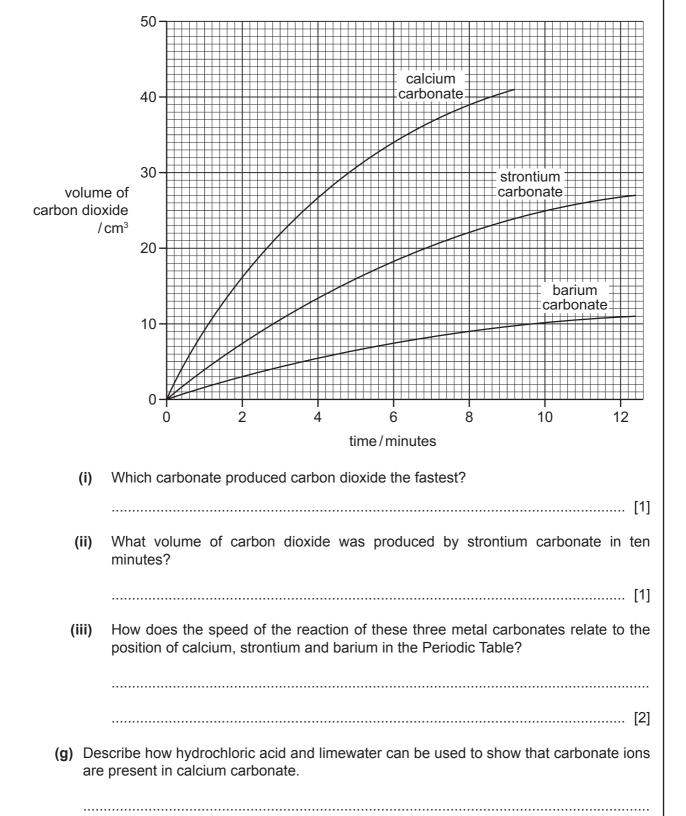
 [ˈ	1


- (b) State the name of the type of chemical reaction that takes place in the rotary lime kiln.
 - Suggest why the air coming out of the rotany kiln has a greater percentage of carbon

......[1]

- (c) Suggest why the air coming out of the rotary kiln has a greater percentage of carbon dioxide than the air entering the kiln.
 -[1]
- (d) State one use for lime.

(e) A student compared the speed of reaction of three metal carbonates. She measured the volume of gas released using the apparatus shown.


State **one** thing that must be kept constant if the speeds of these reactions are to be compared in a fair way.

© UCLES 2010 0620/22/M/J/10

For Examiner's Use

(f) The graph shows the volume of carbon dioxide released when the three metal carbonates are heated.

[Total: 12]

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Ne Neon 10 Argon	18	8 7	Krypton 36	131	Xenon Xenon 54		Radon 86		175 Lu Lutetium 71		100 E
Group	II/		19 Fluorine 9 35.5 C1	17		m		lodine 53	Δţ	Astatine 85		Yb Ytterbium	o _N	Nobelium 102
	>		16 Oxygen 8 32 Suffur Sulfur			=	1	Te Tellurium 52		Polonium 84		169 Tm Thulium	M	Ę
	>		Nitrogen 7 31 Phosphorus					Sb Antimony 51	209 	Bismuth 83		167 Er Erbium 68	Fa	Fermium 100
	2		Carbon 6 Carbon 8 Silicon Silicon	14	ي ع	Ε		S 0	207			165 Ho Holmium 67		Einsteinium 99
	=		11 B Boron 27 A1 Aluminium	13	۶ ر	Gallium 31	115	In Indium	204	Thallium 81		162 Dy Dysprosium 66	Ç	Californium 98
					65	30		Cadmium	201	Mercury 80		159 Tb Terbium	쑮	Berkelium 97
					⁸ 5	Copper 29	108	Ag Silver	197	Gold 79		157 Gd Gadolinium 64	Ë	
					69 Έ			Pd Palladium 46	195	Platinum 78		152 Eu Europium 63	Am	Americium 95
					₉ ک	Cobalt 27	103	Rhodium	1			Sm Samarium	Pu	Plutonium 94
		T Hydrogen			Э2 Ц	lron 26	101	Rut Ruthenium	1	Osmium 76		Pm Promethium	a Q	Neptunium 93
					22	2≥ ≤		Tc Technetium 43	186	_		144 Neodymium 60	238 C	Uranium 92
					ۇ 25	Chromium 24	96	Molybdenum	184	_		Pr Praseodymium	Pa	Protactinium 91
					5 >	Vanadium 23		Niobium 41	181 L	Tantalum 73		140 Ce Cerium	232 Th	Thorium 90
					84 F	Titanium 22	91	Zr Zirconium 40	178 ‡	72			nic mass bol	nic) number
					54 Q	Scandium 21	68	Yttrium	139	Lanthanum 57 *	Actinium t	l series eries	a = relative atomic massX = atomic symbol	b = proton (atomic) number
	=		Beryllium 4 24 Mg Magnesium	12	9 6	Calcium 20	88	Strontium	137 Q	Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	<i>a</i> ×	- P
	_		Lithium 3 23 8 Sodium	11	38	Potassium 19	85	Rb Rubidium	133	Caesium 55	Fr Francium 87	*58-71 L	Key	٩

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.